Serveur d'exploration sur le chant choral et la santé

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synaptic Vesicle Endocytosis in Different Model Systems.

Identifieur interne : 000069 ( Main/Exploration ); précédent : 000068; suivant : 000070

Synaptic Vesicle Endocytosis in Different Model Systems.

Auteurs : Quan Gan [États-Unis] ; Shigeki Watanabe [États-Unis]

Source :

RBID : pubmed:30002619

Abstract

Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

DOI: 10.3389/fncel.2018.00171
PubMed: 30002619
PubMed Central: PMC6031744


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synaptic Vesicle Endocytosis in Different Model Systems.</title>
<author>
<name sortKey="Gan, Quan" sort="Gan, Quan" uniqKey="Gan Q" first="Quan" last="Gan">Quan Gan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Shigeki" sort="Watanabe, Shigeki" uniqKey="Watanabe S" first="Shigeki" last="Watanabe">Shigeki Watanabe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30002619</idno>
<idno type="pmid">30002619</idno>
<idno type="doi">10.3389/fncel.2018.00171</idno>
<idno type="pmc">PMC6031744</idno>
<idno type="wicri:Area/Main/Corpus">000066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000066</idno>
<idno type="wicri:Area/Main/Curation">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000065</idno>
<idno type="wicri:Area/Main/Exploration">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synaptic Vesicle Endocytosis in Different Model Systems.</title>
<author>
<name sortKey="Gan, Quan" sort="Gan, Quan" uniqKey="Gan Q" first="Quan" last="Gan">Quan Gan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Shigeki" sort="Watanabe, Shigeki" uniqKey="Watanabe S" first="Shigeki" last="Watanabe">Shigeki Watanabe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in cellular neuroscience</title>
<idno type="ISSN">1662-5102</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions,
<i>C. elegans</i>
neuromuscular junctions,
<i>Drosophila</i>
neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30002619</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1662-5102</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in cellular neuroscience</Title>
</Journal>
<ArticleTitle>Synaptic Vesicle Endocytosis in Different Model Systems.</ArticleTitle>
<Pagination>
<MedlinePgn>171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fncel.2018.00171</ELocationID>
<Abstract>
<AbstractText>Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions,
<i>C. elegans</i>
neuromuscular junctions,
<i>Drosophila</i>
neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>Quan</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Shigeki</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Cell Neurosci</MedlineTA>
<NlmUniqueID>101477935</NlmUniqueID>
<ISSNLinking>1662-5102</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">kinetics of endocytosis</Keyword>
<Keyword MajorTopicYN="N">model systems</Keyword>
<Keyword MajorTopicYN="N">molecular mechanisms</Keyword>
<Keyword MajorTopicYN="N">synaptic vesicle endocytosis</Keyword>
<Keyword MajorTopicYN="N">synaptic vesicle recycling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30002619</ArticleId>
<ArticleId IdType="doi">10.3389/fncel.2018.00171</ArticleId>
<ArticleId IdType="pmc">PMC6031744</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neuron. 2006 Apr 6;50(1):49-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2009 Feb;40(2):234-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19059483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17551019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2000 Oct;28(1):221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2000 Dec 15;20(24):9135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11124991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Jun 24;3:e01621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24963135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Mar 6;148(5):1047-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2001 Feb;4(2):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2000 Sep;27(3):551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11055437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):2916-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Jul;13(7):845-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2007 Dec 15;585(Pt 3):681-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurobiol. 1993 Aug;24(8):1008-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8409966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 May 29;33(22):9402-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1997 Aug 1;17(15):5858-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9221783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 25;370(6491):652-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8065451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2003 Dec 18;40(6):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14687543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2007 Jul 16;178(2):309-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1973 May;57(2):499-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4348791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Sep 20;75(6):1008-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2014 Jan;17(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24369372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2017 Dec 5;113(11):2406-2414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29211994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2002 Sep 12;35(6):1085-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Aug 7;22(15):1435-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2007 Dec;98(6):3349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2014;76:301-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Plast. 2015;2015:371496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26682072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 25;409(6819):479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11206537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2002 Aug 19;450(2):167-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2001 Dec 20;32(6):1119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1998 Nov 1;18(21):8614-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9786969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6445-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 May 15;23(10):4092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12764096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Oct 3;115(1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 1999 Sep;2(9):791-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13003923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2016 Dec 7;92(5):1020-1035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Apr 16;33(8):788-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24596248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1951 Nov 28;115(3):320-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14898516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Feb 22;93(4):854-866.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28231467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Cell Biol. 2009 Mar;Chapter 19:Unit 19.11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19283729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 May 01;4(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22357909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Nov 15;126(Pt 22):5305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24046449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1999 Feb 15;515 ( Pt 1):181-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2017 Aug 1;595(15):5265-5284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28555839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1973 May;57(2):315-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4348786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2009 Feb 12;61(3):397-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19217377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1971 Mar;213(3):691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4323935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Nov 21;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29160768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2006 Sep 21;51(6):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Tissue Res. 2006 Nov;326(2):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Nov 5;23(31):10164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14602833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2008 Jan;11(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18066059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurobiol. 1983 May;14(3):207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6304244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 1995 Nov;34(11):1387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20160082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Dec 3;28(49):13216-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):102-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17065984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 28;93(11):5567-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1994 Aug;72(2):592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7983521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1979 May;81(2):275-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">38256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Nov 15;15(22):2967-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 1997 Dec;9(12):2503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9517455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Dec 1;183(5):881-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19047463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 May 15;33(20):8820-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jan 10;255(5041):200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1553547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1993 Oct;11(4):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8398156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1980 Oct;307:301-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6259336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Jun 12;14(7):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21666673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2016 May 4;90(3):492-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27146271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Jul 15;312(12):2288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurocytol. 1998 Jun;27(5):361-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9923981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2001;102(3):527-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1996 Oct;17(4):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2008 Mar;9(3):206-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18270515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22462104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2005 Jan;28(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15626493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 31;7:12604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27576662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1993 Jan;460:287-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Jan 15;8(2):R62-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9427637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 1996;19:545-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8833454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 Dec 14;25(50):11676-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16354926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2015 Aug;16(8):923-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26160654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Feb 24;367(6465):735-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7906397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2010 Apr;2010(4):pdb.prot5406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurocytol. 1974 Mar;3(1):109-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4596345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hirnforsch. 1995;36(2):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7615927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1960 Jan;150:134-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13800900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2004 Oct 15;560(Pt 2):413-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Mar 15;26(11):3030-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12381791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2002 May 1;540(Pt 3):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 10;340(6133):759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2008 Dec 15;586(24):5969-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19001048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Nov 24;163(4):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2037-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Sep 03;2:e00723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2004 Jul 22;43(2):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E3007-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23878262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2009 Dec 29;164(4):1546-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>eNeuro. 2017 Aug 10;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28798955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 May;9(5):742-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Jun 25;28(26):6742-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2004 Jul;5(7):514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Nov 9;378(6553):196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7477324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Feb 15;23(4):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12598621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1998 Oct 19;808(2):279-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Methods. 2004 Apr 30;134(2):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Aug;3(8):755-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2001 Oct 15;21(20):7889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11588162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1998 Sep;21(3):607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9768846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 1999 Jun;2(6):503-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10448213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Jun 8;375(6531):493-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7777058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2011 Mar;32(3):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Apr 17;15(4):e2000931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28414717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1973 Jun;32(2):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4208027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Apr 11;276(5310):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Dec 15;22(24):10567-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9294229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Apr 2;21(7):1661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2011 Nov 17;72(4):587-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22099461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 13;323(5920):1448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19213879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Feb 12;34(7):2652-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10702-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Nov 9;31(45):16318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 25;29(12):3865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 4;123(3):521-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Jun 8;31(23):8512-8519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurocytol. 1980 Feb;9(1):119-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6162921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2000 Dec;28(3):941-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1996 Jun;16(6):1221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vis Neurosci. 2008 Jul-Aug;25(4):523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18764958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Mar 1;22(5):1608-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2003 Nov 13;40(4):733-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Sep;118(6):1379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1325974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2017 Dec 11;11:388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29321725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1997 Jul;78(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Apr 23;7:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29683423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 2;286(35):30295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1976 Oct;262(1):215-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">186587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Oct 6;24(40):8641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2002 Nov 14;36(4):649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12441054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Dec;11(12):1399-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 12;504(7479):242-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24305055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4779-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25825725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Neurobiol. 2006;75:145-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17137927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 1;284(18):12410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Sep 12;4(5):1010-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2005 Jun 16;46(6):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2007 Sep;30(9):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zool Res. 2016 Sep 18;37(5):263-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27686784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1996 Jun;16(6):1197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 1974 Mar 15;154(2):207-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4363564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1978 Jun;279:197-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">307600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1984 Feb;98(2):685-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6607255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 4;426(6966):559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):846-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7846064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1998 May;20(5):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9620696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jul 19;412(6844):338-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11460165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jun 13;351(6327):583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1828536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jul 30;2:e00845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23908769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1954 Jun 28;124(3):560-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13175199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2000 Sep;3(9):859-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2007 Sep;8(9):1123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 5;423(6940):607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Sep 14;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27630264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Nov;135(3):797-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8909551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 May;1(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1985 Oct;101(4):1386-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2995407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2008 Aug 14;59(3):475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2004 Dec 2;44(5):835-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2005 Apr 18;484(4):440-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2013 Oct;38(7):2978-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23841903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1994 Jan;4(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Sep 1;30(35):11838-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Jan 1;124(Pt 1):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1999 Jul 15;19(14):5847-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 13;515(7526):228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25296249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1981 Mar;88(3):564-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6260814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Nov;172(2):203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biosci. 2015 Apr 14;5:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25897376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Acad Sci Hebd Seances Acad Sci D. 1970 Dec 21;271(25):2346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4995202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurocytol. 1986 Aug;15(4):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3489077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Nov 21;32(47):16574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Mar 21;88(6):767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9118220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1989 Oct;3(4):473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2642006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Jul;10(7):2343-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10397769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Jun 25;34(26):8788-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24966379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Dec 1;25(24):3926-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25273557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1972 Jul;54(1):30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4338962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Synaptic Neurosci. 2010 Mar 15;2:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2003 Nov 13;40(4):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1994 Sep 15;479 ( Pt 3):381-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7837096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2001 Apr;30(1):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11343653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Feb 4;85(3):484-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25654254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2017 Oct 26;11:324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29123471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1999;61:725-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10099708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Sep 1;22(17):7478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Apr 9;28(15):3925-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2017 Sep 4;(127):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28892038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 7;307(5706):124-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Jun;133(6):1237-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8682861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 30;417(6888):555-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24561832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2001 Apr;4(4):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11276229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2015 Oct 1;305:86-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26254240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Mar 25;18(6):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 Nov;111(4):901-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Jun 4;82(5):981-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24908483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Synaptic Neurosci. 2016 Aug 19;8:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a005645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22763746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2004 Apr;7(4):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2017 Jul;27(7):468-479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28259601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2001 Jan 15;21(2):462-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2008 Jun 12;154(1):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2005 Jan;6(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jul 10;94(1):131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9674434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2011 Mar;105(3):1361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1999 Sep;24(1):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1956 Jun 28;132(3):630-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13332599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Aug 7;150(3):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2002 Dec 19;36(6):1127-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 May 30;351(6325):411-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1674590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2003 Jul 31;39(3):529-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12895425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1994 Aug;13(2):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8060617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2000 Aug;27(2):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10985350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1996 Nov;17(5):957-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Apr 21;29(8):1318-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1996 Oct;17(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(5):2406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2012 Nov;24(11):2043-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 1999 Jul;39(15):2469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10396616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Aug;5(8):e198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2009;25:133-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2001 Sep;2(9):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Gan, Quan" sort="Gan, Quan" uniqKey="Gan Q" first="Quan" last="Gan">Quan Gan</name>
</region>
<name sortKey="Watanabe, Shigeki" sort="Watanabe, Shigeki" uniqKey="Watanabe S" first="Shigeki" last="Watanabe">Shigeki Watanabe</name>
<name sortKey="Watanabe, Shigeki" sort="Watanabe, Shigeki" uniqKey="Watanabe S" first="Shigeki" last="Watanabe">Shigeki Watanabe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteChoraleV4/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteChoraleV4
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30002619
   |texte=   Synaptic Vesicle Endocytosis in Different Model Systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30002619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteChoraleV4 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Sat Oct 10 10:36:24 2020. Site generation: Sat Oct 10 10:37:38 2020